Functional Connectivity with Low Frequency BOLD Fluctuations

Mark J. Lowe, Ph.D.

The Cleveland Clinic Foundation

- Functional connectivity can be defined as a descriptive measure of spatiotemporal correlations that exist between spatially distinct regions of the brain.(1, 2)
- It has been widely observed that spontaneous low-frequency fluctuations in BOLD-weighted MRI data are correlated between brain regions known to be involved in similar task performance
 - o Motor system: (3-5)
 - O Visual system: (4)
 - o Auditory system: (6)
 - o Cognitive systems: (7, 8)
- How To Measure Connectivity with low frequency BOLD fluctuations (LFBF) Example:
 - o Data Acquisition:
 - Need high temporal sampling rate to avoid aliasing cardiac and respiratory-rate effects
 - Typical Experiment
 - Subject at rest in 1.5T MRI scanner
 - acquire 2200 images of a single slice through bilateral motor cortex
 - 64x64 image matrix
 - TE/TR/flip=50ms/133ms/30
 - bandwidth=125kHz
 - FOV=24cm, slice thickness=5mm
 - o Data Analysis:
 - Lowpass temporal filter (<0.1Hz) timeseries at each pixel(9)
 - Select seed voxel in a priori selected region of interest (e.g. primary motor cortex)
 - Calculate cross-correlation of timecourse from seed voxel with every other voxel in acquired volume.
 - Note: for most acquisition strategies, it is NOT necessary to correct for slice-timing offsets due to the low-frequency nature of the effect. If in doubt, correct for slice-time offsets.
- Volumetric acquisition
 - o Aliased physiologic noise results in inefficient filter
 - o Reduction in specificity of effect(4)
 - o Removal of aliased physiologic signals.
- Volumetric Studies-example: 15 slice coronal study (TR=2sec)
 - o 512 volumes acquired (17 minutes)
- Network Analysis Techniques:
 - Data Driven Methods
 - Principle Components Analysis

- Independent Components Analysis
- Cluster Analysis
- Hypothesis Driven Method
 - Structural Equation Modeling
- Principle Components Analysis
 - Eigenanalysis of observed spatiotemporal correlations to produce orthogonal components in the direction of maximal variance
 - o Advantage: easily performed
 - o Disadvantages:
 - Not well-suited for low SNR data (effect of interest should be a major effect on total variance in system)
 - Orthogonality requirement is too stringent for fMRI or connectivity applications
 - Requires post-hoc interpretation
- Independent Components Analysis
 - Assumes time-series data are related by a linear transformation to spatially independent components
 - Separates spatially independent sources contributing to the "entropy" of the system(10)
 - Computationally intensive
 - o PCA typically used to reduce degrees of freedom
 - o Requires post-hoc interpretation of components
- ICA vs. PCA
 - o Example: six independent source images
- Structural Equation Modeling
 - Method to test an *a priori* defined model of path-wise dependence of observable correlations or covariances
 - Application to fMRI or connectivity studies
 - o Can test models of functional and/or neuronal connectivity
 - o Example:
 - Data Acquisition
 - Grad. Echo EPI, 64x64 matrix, 24cm x 24cm FOV, 2 5mm thick slices, TE/TR/flip=50ms/316ms/30°, 1200 repetitions
 - 3 scans: rest, continuous bimanual tapping, fMRI paradigm with interleaved rest and tapping
 - Data Analysis
 - Anatomic T1's used to define ROI's in (left hemisphere only) precentral gyrus, SMA, putamen, globus pallidus, thalamus.
 - Timeseries from each ROI filtered to remove fluctuations > 0.1Hz.
 - Correlation matrix formed for each CP scan (i.e. resting state, and CP tapping)
 - Path model tested using LISREL8 (Scientific Software International)

References

1. Friston KJ, Frith CD, Liddle PF, Frackowiak RS. Functional connectivity: the principal-component analysis of large (PET) data sets. J Cereb Blood Flow Metab 1993; 13:5-14.

- 2. Strother SC, Anderson JR, Schaper KA, et al. Principal component analysis and the scaled subprofile model compared to intersubject averaging and statistical parametric mapping: I. "Functional connectivity" of the human motor system studied with [150]water PET. J Cereb Blood Flow Metab 1995; 15:738-753.
- 3. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain. Magn Res Med 1995; 34:537-541.
- 4. Lowe MJ, Mock BJ, Sorenson JA. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. Neuroimage 1998; 7:119-132.
- 5. Xiong J, Parsons LM, Gao JH, Fox PT. Interregional connectivity to primary motor cortex revealed using MRI resting state images. Hum Brain Mapp 1999; 8:151-156.
- 6. Cordes D, Haughton VM, Arfanakis K, et al. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am J Neuroradiol 2000; 21:1636-1644.
- 7. Lowe MJ, Dzemidzic M, Lurito JT, Mathews VP, Phillips MD. Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage 2000; 12:582-587.
- 8. Hampson M, Peterson BS, Skudlarski P, Gatenby JC, Gore JC. Detection of functional connectivity using temporal correlations in MR images. Hum Brain Mapp 2002; 15:247-262.
- 9. Cordes D, Haughton VM, Arfanakis K, et al. Frequencies contributing to functional connectivity in the cerebral cortex in "resting-state" data. AJNR Am J Neuroradiol 2001; 22:1326-1333.
- 10. Bell AJ, Sejnowski TJ. An information-maximization approach to blind separation and blind deconvolution. Neural Comput 1995; 7:1129-1159.